06.Scikit-Learn教程

三种方式生成数据

方式1

#调用模块
from sklearn.datasets import load_iris
data = load_iris()

#导入数据和标签
data_X = data.data
data_y = data.target 

方式2

from sklearn import datasets
loaded_data = datasets.load_iris()  # 导入数据集的属性

#导入样本数据
data_X = loaded_data.data
# 导入标签
data_y = loaded_data.target

方式3

# 直接返回
data_X, data_y = load_iris(return_X_y=True)

数据集使用汇总

from sklearn import datasets  # 导入库

boston = datasets.load_boston()  # 导入波士顿房价数据
print(boston.keys())  # 查看键(属性)     ['data','target','feature_names','DESCR', 'filename'] 
print(boston.data.shape,boston.target.shape)  # 查看数据的形状 
print(boston.feature_names)  # 查看有哪些特征 
print(boston.DESCR)  # described 数据集描述信息 
print(boston.filename)  # 文件路径 

数据切分

# 导入模块
from sklearn.model_selection import train_test_split
# 划分为训练集和测试集数据
X_train, X_test, y_train, y_test = train_test_split(
  data_X, 
  data_y, 
  test_size=0.2,
  random_state=111
)

# 150*0.8=120
len(X_train)

数据标准化和归一化

from sklearn.preprocessing import StandardScaler  # 标准化
from sklearn.preprocessing import MinMaxScaler  # 归一化

# 标准化
ss = StandardScaler()
X_scaled = ss.fit_transform(X_train)  # 传入待标准化的数据

# 归一化
mm = MinMaxScaler()
X_scaled = mm.fit_transform(X_train)

类型编码

对数字编码

06.Scikit-Learn教程

对字符串编码

06.Scikit-Learn教程

原创文章,作者:朋远方,如若转载,请注明出处:https://caovan.com/06-scikit-learnjiaocheng/.html

Like (0)
Donate 微信扫一扫 微信扫一扫
朋远方的头像朋远方
Previous 2022年11月14日 上午11:27
Next 2022年11月14日 下午9:46

相关推荐

发表回复

Please Login to Comment