线性回归
最终我们找到了线性模型来解释自变量x与因变量y之间的关系,这就是线性回归。回归的解释是,事物总是倾向于朝着某种“平均”发展,这种趋势叫做回归,所以回归多用于预测。
上图,红线是我们拟合出的最佳模型,在此模型上我们可以寻找到2.2,2.6,2.8的预测值,分别对应图中的三个红点。
这也是线性回归的基本意义。
代码实践
准备数据:
import numpy as np import matplotlib.pyplot as plt np.random.seed(42) X = 2 * np.random.rand(10) y = 4 + 3 * X + np.random.randn(10) plt.plot(X, y, "bo") plt.xlabel("$X$", fontsize=18) plt.ylabel("$y$", rotation=0, fontsize=18) plt.axis([0, 2, 0, 15]) plt.show()
绘制y=3x+2和y=4x+4两条直线:
plt.plot(X, y, "bo") plt.plot(X, 3*X+2, "r-", lw="5", label = "y=3x+2") plt.plot(X, 4*X+4, "g:", lw="5", label = "y=4x+4") plt.xlabel("$X$", fontsize=18) plt.ylabel("$y$", rotation=0, fontsize=18) plt.axis([0, 2, 0, 15]) plt.legend(loc="upper left") plt.show()
计算损失,并比较y=3x+2和y=4x+4两条直线:
fig, ax_list = plt.subplots(nrows=1, ncols=2,figsize=(20,10)) ax_list[0].plot(X, y, "bo") ax_list[0].plot(X, 3*X+2, "r-", lw="5", label = "y=3x+2") loss = 0 for i in range(10): ax_list[0].plot([X[i],X[i]], [y[i],3*X[i]+2], color='grey') loss= loss + np.square(3*X[i]+2-y[i]) pass ax_list[0].axis([0, 2, 0, 15]) ax_list[0].legend(loc="upper left") ax_list[0].title.set_text('loss=%s'%loss) ax_list[1].plot(X, y, "bo") ax_list[1].plot(X, 4*X+4, "g:", lw="5", label = "y=4x+4") loss = 0 for i in range(10): ax_list[1].plot([X[i],X[i]], [y[i],4*X[i]+4], color='grey') loss= loss + np.square(4*X[i]+4-y[i]) pass ax_list[1].axis([0, 2, 0, 15]) ax_list[1].legend(loc="upper left") ax_list[1].title.set_text('loss=%s'%loss) fig.subplots_adjust(wspace=0.1,hspace=0.5) fig.suptitle("Calculate loss",fontsize=16)
训练模型,并预测:
from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(X.reshape(-1,1),y.reshape(-1,1)) X_test = [[2.2],[2.6],[2.8]] y_test = lr.predict(X_test) X_pred = 3 * np.random.rand(100, 1) y_pred = lr.predict(X_pred) plt.scatter(X,y, c='b', label='real') plt.plot(X_test,y_test, 'r', label='predicted point' ,marker=".", ms=20) plt.plot(X_pred,y_pred, 'r-', label='predicted') plt.xlabel("$X$", fontsize=18) plt.ylabel("$y$", rotation=0, fontsize=18) plt.axis([0, 3, 0, 15]) plt.legend(loc="upper left") loss = 0 for i in range(10): loss = loss + np.square(y[i]-lr.predict([[X[i]]])) plt.title("loss=%s"%loss) plt.show()
原创文章,作者:朋远方,如若转载,请注明出处:https://caovan.com/07-lijiexianxinghuiguiyutiduxiajiangbingzuojiandanyuce/.html